Show commands for:
SageMath
sage: E = EllipticCurve("113715.bd1")
sage: E.isogeny_class()
Elliptic curves in class 113715t
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
113715.bd3 | 113715t1 | [1, -1, 0, -8190, 272335] | [2] | 193536 | \(\Gamma_0(N)\)-optimal |
113715.bd2 | 113715t2 | [1, -1, 0, -24435, -1127984] | [2, 2] | 387072 | |
113715.bd4 | 113715t3 | [1, -1, 0, 56790, -7089899] | [2] | 774144 | |
113715.bd1 | 113715t4 | [1, -1, 0, -365580, -84981425] | [2] | 774144 |
Rank
sage: E.rank()
The elliptic curves in class 113715t have rank \(0\).
Modular form 113715.2.a.bd
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.