Properties

Label 113288u
Number of curves $1$
Conductor $113288$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 113288u1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 113288u do not have complex multiplication.

Modular form 113288.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} - 2 q^{11} + 4 q^{13} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 113288u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
113288.n1 113288u1 \([0, 0, 0, -74246123, 246562353926]\) \(-3241463778/4913\) \(-68604190600952468998144\) \([]\) \(11031552\) \(3.2820\) \(\Gamma_0(N)\)-optimal