Properties

Label 11310.c1
Conductor $11310$
Discriminant $6.033\times 10^{12}$
j-invariant \( \frac{64443098670429961}{6032611833300} \)
CM no
Rank $2$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, -8352, -272484])
 
gp: E = ellinit([1, 1, 0, -8352, -272484])
 
magma: E := EllipticCurve([1, 1, 0, -8352, -272484]);
 

\(y^2+xy=x^3+x^2-8352x-272484\)  Toggle raw display

Mordell-Weil group structure

$\Z^2 \times \Z/{2}\Z$

Infinite order Mordell-Weil generators and heights

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(-58, 174\right)\)  Toggle raw display\(\left(117, 549\right)\)  Toggle raw display
$\hat{h}(P)$ ≈  $0.47926636601742276197921688321$$2.1291088932621181462982394504$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-\frac{261}{4}, \frac{261}{8}\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-58, 174\right) \), \( \left(-58, -116\right) \), \( \left(-53, 184\right) \), \( \left(-53, -131\right) \), \( \left(-45, 144\right) \), \( \left(-45, -99\right) \), \( \left(116, 522\right) \), \( \left(116, -638\right) \), \( \left(117, 549\right) \), \( \left(117, -666\right) \), \( \left(145, 1189\right) \), \( \left(145, -1334\right) \), \( \left(290, 4524\right) \), \( \left(290, -4814\right) \), \( \left(522, 11484\right) \), \( \left(522, -12006\right) \), \( \left(3770, 229564\right) \), \( \left(3770, -233334\right) \), \( \left(1409922, 1673439084\right) \), \( \left(1409922, -1674849006\right) \)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 11310 \)  =  $2 \cdot 3 \cdot 5 \cdot 13 \cdot 29$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $6032611833300 $  =  $2^{2} \cdot 3^{8} \cdot 5^{2} \cdot 13 \cdot 29^{4} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{64443098670429961}{6032611833300} \)  =  $2^{-2} \cdot 3^{-8} \cdot 5^{-2} \cdot 13^{-1} \cdot 29^{-4} \cdot 587^{3} \cdot 683^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $1.1907403618847302263271787146\dots$
Stable Faltings height: $1.1907403618847302263271787146\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $2$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $0.98884997713919495670193802745\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.50239281289954044390061625978\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 32 $  = $ 2\cdot2\cdot2\cdot1\cdot2^{2} $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (rounded)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L^{(2)}(E,1)/2! $ ≈ $ 3.9743289724048513368048845069057317206 $

Modular invariants

Modular form 11310.2.a.c

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - 4 q^{7} - q^{8} + q^{9} - q^{10} - 4 q^{11} - q^{12} + q^{13} + 4 q^{14} - q^{15} + q^{16} - 6 q^{17} - q^{18} - 4 q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 49152
$ \Gamma_0(N) $-optimal: no
Manin constant: 1

Local data

This elliptic curve is semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$3$ $2$ $I_{8}$ Non-split multiplicative 1 1 8 8
$5$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$13$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$29$ $4$ $I_{4}$ Split multiplicative -1 1 4 4

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.12.0.8

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit nonsplit split ordinary ordinary split ordinary ordinary ordinary split ordinary ordinary ordinary ordinary ss
$\lambda$-invariant(s) 2 2 3 2 2 3 2 2 2 3 2 2 2 2 2,2
$\mu$-invariant(s) 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 11310.c consists of 3 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{13}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{-1}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{-13}) \) \(\Z/4\Z\) Not in database
$4$ 4.2.3515200.1 \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(i, \sqrt{13})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.197706096640000.50 \(\Z/4\Z \times \Z/4\Z\) Not in database
$8$ 8.0.489596882944.4 \(\Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.