# Properties

 Label 112710.by1 Conductor $112710$ Discriminant $-3.662\times 10^{18}$ j-invariant $$-\frac{2541499591834369}{43848960714000}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, -124276, 93553349])

gp: E = ellinit([1, 1, 1, -124276, 93553349])

magma: E := EllipticCurve([1, 1, 1, -124276, 93553349]);

$$y^2+xy+y=x^3+x^2-124276x+93553349$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(\frac{1079}{4}, \frac{70359}{8}\right)$$ $$\hat{h}(P)$$ ≈ $5.2252810461957867414002646254$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);



## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$112710$$ = $$2 \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-3662309047793994000$$ = $$-1 \cdot 2^{4} \cdot 3^{10} \cdot 5^{3} \cdot 13^{5} \cdot 17^{4}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{2541499591834369}{43848960714000}$$ = $$-1 \cdot 2^{-4} \cdot 3^{-10} \cdot 5^{-3} \cdot 13^{-5} \cdot 17^{2} \cdot 20641^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$2.2432199447213553662502135125\dots$$ Stable Faltings height: $$1.2988154967026166728337019732\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$5.2252810461957867414002646254\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.21020207125368459087489483329\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$8$$  = $$2^{2}\cdot2\cdot1\cdot1\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 112710.2.a.by

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 4q^{7} + q^{8} + q^{9} - q^{10} - 5q^{11} - q^{12} - q^{13} + 4q^{14} + q^{15} + q^{16} + q^{18} + q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 3110400 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$8.7869191903437946314175813860690292067$$

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$3$$ $$2$$ $$I_{10}$$ Non-split multiplicative 1 1 10 10
$$5$$ $$1$$ $$I_{3}$$ Non-split multiplicative 1 1 3 3
$$13$$ $$1$$ $$I_{5}$$ Non-split multiplicative 1 1 5 5
$$17$$ $$1$$ $$IV$$ Additive -1 2 4 0

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split nonsplit nonsplit ordinary ordinary nonsplit add ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary 3 1 1 1 1 1 - 1 1 1 1 1 1 1 1 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 112710.by consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.75140.1 $$\Z/2\Z$$ Not in database $6$ 6.0.1467965096000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ 8.2.6761185934388912.10 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.