# Properties

 Label 1122.n Number of curves $2$ Conductor $1122$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("1122.n1")

sage: E.isogeny_class()

## Elliptic curves in class 1122.n

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1122.n1 1122n1 [1, 0, 0, -196, -1072]  384 $$\Gamma_0(N)$$-optimal
1122.n2 1122n2 [1, 0, 0, -156, -1512]  768

## Rank

sage: E.rank()

The elliptic curves in class 1122.n have rank $$0$$.

## Modular form1122.2.a.n

sage: E.q_eigenform(10)

$$q + q^{2} + q^{3} + q^{4} + 4q^{5} + q^{6} - 2q^{7} + q^{8} + q^{9} + 4q^{10} + q^{11} + q^{12} - 2q^{14} + 4q^{15} + q^{16} - q^{17} + q^{18} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 