Minimal Weierstrass equation
\(y^2+xy=x^3-904x+10304\)
Mordell-Weil group structure
\(\Z\times \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(20, 8\right) \) |
\(\hat{h}(P)\) | ≈ | $0.12373836247047691363555933043$ |
Torsion generators
\( \left(16, -8\right) \)
Integral points
\( \left(-34, 62\right) \), \( \left(-34, -28\right) \), \( \left(-16, 152\right) \), \( \left(-16, -136\right) \), \( \left(8, 56\right) \), \( \left(8, -64\right) \), \( \left(14, 14\right) \), \( \left(14, -28\right) \), \( \left(16, -8\right) \), \( \left(20, 8\right) \), \( \left(20, -28\right) \), \( \left(32, 104\right) \), \( \left(32, -136\right) \), \( \left(80, 632\right) \), \( \left(80, -712\right) \), \( \left(160, 1912\right) \), \( \left(160, -2072\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 1122 \) | = | \(2 \cdot 3 \cdot 11 \cdot 17\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(744505344 \) | = | \(2^{14} \cdot 3^{5} \cdot 11 \cdot 17 \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{81706955619457}{744505344} \) | = | \(2^{-14} \cdot 3^{-5} \cdot 7^{3} \cdot 11^{-1} \cdot 17^{-1} \cdot 6199^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(0.12373836247047691363555933043\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(1.6081945560111911298843649121\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 70 \) = \( ( 2 \cdot 7 )\cdot5\cdot1\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 1120 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 3.4824188156583079680733022639616856269 \)
Local data
This elliptic curve is semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(14\) | \(I_{14}\) | Split multiplicative | -1 | 1 | 14 | 14 |
\(3\) | \(5\) | \(I_{5}\) | Split multiplicative | -1 | 1 | 5 | 5 |
\(11\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(17\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X15.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 2 & 1 \end{array}\right)$ and has index 6.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
Note: \(p\)-adic regulator data only exists for primes \(p\ge 5\) of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ordinary | ordinary | nonsplit | ordinary | nonsplit | ordinary | ss | ss | ordinary | ordinary | ordinary | ordinary | ordinary |
$\lambda$-invariant(s) | 2 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1,3 | 1,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class 1122.i
consists of 2 curves linked by isogenies of
degree 2.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{561}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$4$ | 4.0.35904.3 | \(\Z/4\Z\) | Not in database |
$8$ | 8.0.405705964916736.3 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.2.3465933379972272.3 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.