# Properties

 Label 1122.g1 Conductor $1122$ Discriminant $4.283\times 10^{19}$ j-invariant $$\frac{150476552140919246594353}{42832838728685592576}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2+xy+y=x^3+x^2-1108107x+319580601$$ y^2+xy+y=x^3+x^2-1108107x+319580601 (homogenize, simplify) $$y^2z+xyz+yz^2=x^3+x^2z-1108107xz^2+319580601z^3$$ y^2z+xyz+yz^2=x^3+x^2z-1108107xz^2+319580601z^3 (dehomogenize, simplify) $$y^2=x^3-1436106699x+14931894129030$$ y^2=x^3-1436106699x+14931894129030 (homogenize, minimize)

sage: E = EllipticCurve([1, 1, 1, -1108107, 319580601])

gp: E = ellinit([1, 1, 1, -1108107, 319580601])

magma: E := EllipticCurve([1, 1, 1, -1108107, 319580601]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(\frac{3427}{4}, -\frac{3431}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$1122$$ = $2 \cdot 3 \cdot 11 \cdot 17$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $42832838728685592576$ = $2^{13} \cdot 3^{26} \cdot 11^{2} \cdot 17$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{150476552140919246594353}{42832838728685592576}$$ = $2^{-13} \cdot 3^{-26} \cdot 11^{-2} \cdot 17^{-1} \cdot 389^{3} \cdot 136733^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $2.4736610154821714882016095674\dots$ Stable Faltings height: $2.4736610154821714882016095674\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Real period: $0.18897855991355678243526076561\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $52$  = $13\cdot2\cdot2\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $2.4567212788762381716583899530$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} + 2 q^{5} - q^{6} - 2 q^{7} + q^{8} + q^{9} + 2 q^{10} + q^{11} - q^{12} + 4 q^{13} - 2 q^{14} - 2 q^{15} + q^{16} + q^{17} + q^{18} - 2 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 32448 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $13$ $I_{13}$ Split multiplicative -1 1 13 13
$3$ $2$ $I_{26}$ Non-split multiplicative 1 1 26 26
$11$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$17$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1
sage: gens = [[1, 0, 4, 1], [409, 4, 818, 9], [2993, 4, 1498, 9], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [2, 1, 2243, 0], [2114, 1, 3431, 0], [3929, 562, 560, 3927], [4485, 4, 4484, 5]]

sage: GL(2,Integers(4488)).subgroup(gens)

magma: Gens := [[1, 0, 4, 1], [409, 4, 818, 9], [2993, 4, 1498, 9], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [2, 1, 2243, 0], [2114, 1, 3431, 0], [3929, 562, 560, 3927], [4485, 4, 4484, 5]];

magma: sub<GL(2,Integers(4488))|Gens>;

The image of the adelic Galois representation has level $4488$, index $12$, genus $0$, and generators

$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 409 & 4 \\ 818 & 9 \end{array}\right),\left(\begin{array}{rr} 2993 & 4 \\ 1498 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 2243 & 0 \end{array}\right),\left(\begin{array}{rr} 2114 & 1 \\ 3431 & 0 \end{array}\right),\left(\begin{array}{rr} 3929 & 562 \\ 560 & 3927 \end{array}\right),\left(\begin{array}{rr} 4485 & 4 \\ 4484 & 5 \end{array}\right)$

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 split nonsplit ord ord split ord split 4 0 0 0 1 2 1 0 0 0 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 17$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 1122.g consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{34})$$ $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $4$ 4.4.592416.1 $$\Z/4\Z$$ Not in database $8$ deg 8 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.8.6491295438667776.12 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.2.3465933379972272.7 $$\Z/6\Z$$ Not in database $16$ deg 16 $$\Z/8\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.