Minimal Weierstrass equation
\(y^2+xy+y=x^3-547x+4766\)
Mordell-Weil group structure
\(\Z\times \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(7, 32\right) \) |
\(\hat{h}(P)\) | ≈ | $0.17157002965595381893367872244$ |
Torsion generators
\( \left(15, -8\right) \)
Integral points
\( \left(-17, 104\right) \), \( \left(-17, -88\right) \), \( \left(-2, 77\right) \), \( \left(-2, -76\right) \), \( \left(7, 32\right) \), \( \left(7, -40\right) \), \( \left(15, -8\right) \), \( \left(16, 5\right) \), \( \left(16, -22\right) \), \( \left(40, 197\right) \), \( \left(40, -238\right) \), \( \left(151, 1760\right) \), \( \left(151, -1912\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 1122 \) | = | \(2 \cdot 3 \cdot 11 \cdot 17\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(444958272 \) | = | \(2^{6} \cdot 3^{7} \cdot 11 \cdot 17^{2} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{18052771191337}{444958272} \) | = | \(2^{-6} \cdot 3^{-7} \cdot 11^{-1} \cdot 17^{-2} \cdot 37^{3} \cdot 709^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(0.17157002965595381893367872244\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(1.6670804764912303727149907533\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 28 \) = \( 2\cdot7\cdot1\cdot2 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 672 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 2.0021473275332341282161380378870002860 \)
Local data
This elliptic curve is semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(I_{6}\) | Non-split multiplicative | 1 | 1 | 6 | 6 |
\(3\) | \(7\) | \(I_{7}\) | Split multiplicative | -1 | 1 | 7 | 7 |
\(11\) | \(1\) | \(I_{1}\) | Split multiplicative | -1 | 1 | 1 | 1 |
\(17\) | \(2\) | \(I_{2}\) | Non-split multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
Note: \(p\)-adic regulator data only exists for primes \(p\ge 5\) of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | split | ordinary | ordinary | split | ss | nonsplit | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary |
$\lambda$-invariant(s) | 4 | 2 | 1 | 1 | 4 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class 1122.d
consists of 2 curves linked by isogenies of
degree 2.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$4$ | 4.4.610368.2 | \(\Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.8.405705964916736.2 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.2.216620836248267.7 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.