Learn more

Refine search


Results (42 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
1122.a1 1122.a \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1586306, 768343356]$ \(y^2+xy=x^3+x^2-1586306x+768343356\)
1122.a2 1122.a \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -99146, 11973780]$ \(y^2+xy=x^3+x^2-99146x+11973780\)
1122.a3 1122.a \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -91666, 13866220]$ \(y^2+xy=x^3+x^2-91666x+13866220\)
1122.a4 1122.a \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -6666, 154836]$ \(y^2+xy=x^3+x^2-6666x+154836\)
1122.b1 1122.b \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $2.758545454$ $[1, 1, 0, -2984, -63840]$ \(y^2+xy=x^3+x^2-2984x-63840\)
1122.b2 1122.b \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.379272727$ $[1, 1, 0, -264, -192]$ \(y^2+xy=x^3+x^2-264x-192\)
1122.c1 1122.c \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -483939, 129374577]$ \(y^2+xy=x^3+x^2-483939x+129374577\)
1122.c2 1122.c \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -31399, 1848805]$ \(y^2+xy=x^3+x^2-31399x+1848805\)
1122.c3 1122.c \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -8279, -264363]$ \(y^2+xy=x^3+x^2-8279x-264363\)
1122.c4 1122.c \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 51221, 10028185]$ \(y^2+xy=x^3+x^2+51221x+10028185\)
1122.d1 1122.d \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.343140059$ $[1, 0, 1, -1227, -9650]$ \(y^2+xy+y=x^3-1227x-9650\)
1122.d2 1122.d \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.171570029$ $[1, 0, 1, -547, 4766]$ \(y^2+xy+y=x^3-547x+4766\)
1122.e1 1122.e \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $7.575052738$ $[1, 1, 1, -394944, -95697123]$ \(y^2+xy+y=x^3+x^2-394944x-95697123\)
1122.e2 1122.e \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.787526369$ $[1, 1, 1, -24684, -1502979]$ \(y^2+xy+y=x^3+x^2-24684x-1502979\)
1122.e3 1122.e \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $7.575052738$ $[1, 1, 1, -24344, -1545955]$ \(y^2+xy+y=x^3+x^2-24344x-1545955\)
1122.e4 1122.e \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $1.893763184$ $[1, 1, 1, -1564, -23299]$ \(y^2+xy+y=x^3+x^2-1564x-23299\)
1122.e5 1122.e \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/4\Z$ $0.946881592$ $[1, 1, 1, -284, 1277]$ \(y^2+xy+y=x^3+x^2-284x+1277\)
1122.e6 1122.e \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/4\Z$ $3.787526369$ $[1, 1, 1, 1076, -90883]$ \(y^2+xy+y=x^3+x^2+1076x-90883\)
1122.f1 1122.f \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.671538792$ $[1, 1, 1, -9, -9]$ \(y^2+xy+y=x^3+x^2-9x-9\)
1122.f2 1122.f \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.335769396$ $[1, 1, 1, 31, -25]$ \(y^2+xy+y=x^3+x^2+31x-25\)
1122.g1 1122.g \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1108107, 319580601]$ \(y^2+xy+y=x^3+x^2-1108107x+319580601\)
1122.g2 1122.g \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -411787, -97932871]$ \(y^2+xy+y=x^3+x^2-411787x-97932871\)
1122.h1 1122.h \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1937, -31219]$ \(y^2+xy+y=x^3+x^2-1937x-31219\)
1122.h2 1122.h \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -407, 2441]$ \(y^2+xy+y=x^3+x^2-407x+2441\)
1122.h3 1122.h \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -387, 2769]$ \(y^2+xy+y=x^3+x^2-387x+2769\)
1122.h4 1122.h \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 803, 15509]$ \(y^2+xy+y=x^3+x^2+803x+15509\)
1122.i1 1122.i \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.123738362$ $[1, 0, 0, -904, 10304]$ \(y^2+xy=x^3-904x+10304\)
1122.i2 1122.i \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.061869181$ $[1, 0, 0, -264, 24768]$ \(y^2+xy=x^3-264x+24768\)
1122.j1 1122.j \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -16594568, -26020768704]$ \(y^2+xy=x^3-16594568x-26020768704\)
1122.j2 1122.j \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -16594408, -26021295520]$ \(y^2+xy=x^3-16594408x-26021295520\)
1122.j3 1122.j \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -205448, -35497920]$ \(y^2+xy=x^3-205448x-35497920\)
1122.j4 1122.j \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -41608, -90515392]$ \(y^2+xy=x^3-41608x-90515392\)
1122.k1 1122.k \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -198, 1056]$ \(y^2+xy=x^3-198x+1056\)
1122.k2 1122.k \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -188, 1170]$ \(y^2+xy=x^3-188x+1170\)
1122.l1 1122.l \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -182, 930]$ \(y^2+xy=x^3-182x+930\)
1122.l2 1122.l \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -12, 12]$ \(y^2+xy=x^3-12x+12\)
1122.m1 1122.m \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1404247, -640608535]$ \(y^2+xy=x^3-1404247x-640608535\)
1122.m2 1122.m \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -87767, -10014615]$ \(y^2+xy=x^3-87767x-10014615\)
1122.m3 1122.m \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -82007, -11384343]$ \(y^2+xy=x^3-82007x-11384343\)
1122.m4 1122.m \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, -5847, -135063]$ \(y^2+xy=x^3-5847x-135063\)
1122.n1 1122.n \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -196, -1072]$ \(y^2+xy=x^3-196x-1072\)
1122.n2 1122.n \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -156, -1512]$ \(y^2+xy=x^3-156x-1512\)
  Download to