Show commands for:
SageMath
sage: E = EllipticCurve("ca1")
sage: E.isogeny_class()
Elliptic curves in class 11200.ca
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
11200.ca1 | 11200n4 | [0, 0, 0, -29900, 1990000] | [2] | 16384 | |
11200.ca2 | 11200n3 | [0, 0, 0, -5900, -138000] | [2] | 16384 | |
11200.ca3 | 11200n2 | [0, 0, 0, -1900, 30000] | [2, 2] | 8192 | |
11200.ca4 | 11200n1 | [0, 0, 0, 100, 2000] | [2] | 4096 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 11200.ca have rank \(0\).
Complex multiplication
The elliptic curves in class 11200.ca do not have complex multiplication.Modular form 11200.2.a.ca
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.