Properties

Label 1120.c
Number of curves $1$
Conductor $1120$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1120.c1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1120.c do not have complex multiplication.

Modular form 1120.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{7} - 2 q^{9} + q^{11} - q^{13} + q^{15} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1120.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1120.c1 1120d1 \([0, -1, 0, -301, -1915]\) \(-738763264/875\) \(-3584000\) \([]\) \(192\) \(0.16922\) \(\Gamma_0(N)\)-optimal