Properties

Label 11197a
Number of curves $1$
Conductor $11197$
CM no
Rank $3$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 11197a1 has rank \(3\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11197\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11197a do not have complex multiplication.

Modular form 11197.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 3 q^{3} - q^{4} - 2 q^{5} + 3 q^{6} - 5 q^{7} + 3 q^{8} + 6 q^{9} + 2 q^{10} - 4 q^{11} + 3 q^{12} - 7 q^{13} + 5 q^{14} + 6 q^{15} - q^{16} - 2 q^{17} - 6 q^{18} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 11197a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11197.a1 11197a1 \([1, -1, 1, -6, 0]\) \(20346417/11197\) \(11197\) \([]\) \(2080\) \(-0.53244\) \(\Gamma_0(N)\)-optimal