# Properties

 Label 111600ev1 Conductor $111600$ Discriminant $-2.133\times 10^{19}$ j-invariant $$\frac{23862997439}{457113600}$$ CM no Rank $2$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, 215925, -218807750]) # or

sage: E = EllipticCurve("111600.de6")

gp: E = ellinit([0, 0, 0, 215925, -218807750]) \\ or

gp: E = ellinit("111600.de6")

magma: E := EllipticCurve([0, 0, 0, 215925, -218807750]); // or

magma: E := EllipticCurve("111600.de6");

$$y^2=x^3+215925x-218807750$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(1295, 47250\right)$$ $$\left(710, 17100\right)$$ $$\hat{h}(P)$$ ≈ $3.2407925215442774304351464551$ $4.3499656477869088630657495717$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(485, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(485, 0\right)$$, $$(710,\pm 17100)$$, $$(1295,\pm 47250)$$, $$(4581,\pm 311296)$$, $$(10095,\pm 1015250)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$111600$$ = $$2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-21327092121600000000$$ = $$-1 \cdot 2^{28} \cdot 3^{8} \cdot 5^{8} \cdot 31$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{23862997439}{457113600}$$ = $$2^{-16} \cdot 3^{-2} \cdot 5^{-2} \cdot 31^{-1} \cdot 2879^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$13.577059281864077791297080748$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.10469250031751425551298137908$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$32$$  = $$2^{2}\cdot2\cdot2^{2}\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

Modular form 111600.2.a.de

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 4q^{11} - 6q^{13} + 2q^{17} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 2359296 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$11.371330265419718672816447132996509412$$

## Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_{20}^{*}$$ Additive -1 4 28 16
$$3$$ $$2$$ $$I_2^{*}$$ Additive -1 2 8 2
$$5$$ $$4$$ $$I_2^{*}$$ Additive 1 2 8 2
$$31$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X120l.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 7 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 5 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right)$ and has index 48.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add add ss ordinary ordinary ordinary ordinary ordinary ordinary split ordinary ordinary ordinary ss - - - 2,2 2 2 2 2 2 2 3 2 2 2 2,2 - - - 0,0 0 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4 and 8.
Its isogeny class 111600ev consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-31})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database $2$ $$\Q(\sqrt{15})$$ $$\Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{-465})$$ $$\Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{15}, \sqrt{-31})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{15}, \sqrt{31})$$ $$\Z/8\Z$$ Not in database $4$ $$\Q(i, \sqrt{15})$$ $$\Z/8\Z$$ Not in database $8$ 8.0.718877981610000.2 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.11502047705760000.13 $$\Z/8\Z$$ Not in database $8$ 8.0.11968832160000.6 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ Deg 8 $$\Z/16\Z$$ Not in database $8$ 8.0.2802276000000.11 $$\Z/16\Z$$ Not in database $8$ Deg 8 $$\Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.