Properties

Label 1110c1
Conductor $1110$
Discriminant $2.135\times 10^{19}$
j-invariant \( \frac{318929057401476905525449}{21353131537921474560} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, -1423388, -615252528]) # or
 
sage: E = EllipticCurve("1110c1")
 
gp: E = ellinit([1, 1, 0, -1423388, -615252528]) \\ or
 
gp: E = ellinit("1110c1")
 
magma: E := EllipticCurve([1, 1, 0, -1423388, -615252528]); // or
 
magma: E := EllipticCurve("1110c1");
 

\( y^2 + x y = x^{3} + x^{2} - 1423388 x - 615252528 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(-\frac{483649}{625}, \frac{81909524}{15625}\right) \)
\(\hat{h}(P)\) ≈  $10.884246623693265$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(1368, -684\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(1368, -684\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 1110 \)  =  \(2 \cdot 3 \cdot 5 \cdot 37\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(21353131537921474560 \)  =  \(2^{44} \cdot 3^{8} \cdot 5 \cdot 37 \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{318929057401476905525449}{21353131537921474560} \)  =  \(2^{-44} \cdot 3^{-8} \cdot 5^{-1} \cdot 37^{-1} \cdot 59^{3} \cdot 1158011^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(10.8842466237\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.138800923855\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 4 \)  = \( 2\cdot2\cdot1\cdot1 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(2\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form   1110.2.a.a

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - 4q^{7} - q^{8} + q^{9} + q^{10} + 4q^{11} - q^{12} + 2q^{13} + 4q^{14} + q^{15} + q^{16} - 2q^{17} - q^{18} + 8q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 49280
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 1.51074348684 \)

Local data

This elliptic curve is semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \( I_{44} \) Non-split multiplicative 1 1 44 44
\(3\) \(2\) \( I_{8} \) Non-split multiplicative 1 1 8 8
\(5\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1
\(37\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13c.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

Note: \(p\)-adic regulator data only exists for primes \(p\ge 5\) of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit nonsplit nonsplit ordinary ordinary ordinary ordinary ordinary ss ordinary ordinary nonsplit ordinary ordinary ordinary
$\lambda$-invariant(s) 3 1 1 1 1 1 3 3 1,1 1 1 1 1 1 1
$\mu$-invariant(s) 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 1110c consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{5}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{37}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{185}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$4$ \(\Q(\sqrt{5}, \sqrt{37})\) \(\Z/2\Z \times \Z/4\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.