Properties

Label 1110.k
Number of curves $6$
Conductor $1110$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("1110.k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1110.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1110.k1 1110k4 [1, 1, 1, -341005, 76503875] [4] 6912  
1110.k2 1110k5 [1, 1, 1, -303125, -64083373] [2] 13824  
1110.k3 1110k3 [1, 1, 1, -29325, 204867] [2, 2] 6912  
1110.k4 1110k2 [1, 1, 1, -21325, 1187267] [2, 4] 3456  
1110.k5 1110k1 [1, 1, 1, -845, 32195] [4] 1728 \(\Gamma_0(N)\)-optimal
1110.k6 1110k6 [1, 1, 1, 116475, 1779507] [2] 13824  

Rank

sage: E.rank()
 

The elliptic curves in class 1110.k have rank \(0\).

Modular form 1110.2.a.k

sage: E.q_eigenform(10)
 
\( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} + 4q^{11} - q^{12} - 2q^{13} - q^{15} + q^{16} + 2q^{17} + q^{18} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.