Properties

Label 1110.d
Number of curves $1$
Conductor $1110$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1110.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1110.d1 1110d1 \([1, 1, 0, 203, -491]\) \(918046641959/674325000\) \(-674325000\) \([]\) \(720\) \(0.38239\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1110.d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1110.d do not have complex multiplication.

Modular form 1110.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 3q^{7} - q^{8} + q^{9} - q^{10} - 5q^{11} - q^{12} - 2q^{13} - 3q^{14} - q^{15} + q^{16} - 7q^{17} - q^{18} - 2q^{19} + O(q^{20})\)  Toggle raw display