Learn more

Refine search


Results (33 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
1110.a1 1110.a \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $43.53698649$ $[1, 1, 0, -358318108, -2610814913072]$ \(y^2+xy=x^3+x^2-358318108x-2610814913072\)
1110.a2 1110.a \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $21.76849324$ $[1, 1, 0, -22394908, -40800879152]$ \(y^2+xy=x^3+x^2-22394908x-40800879152\)
1110.a3 1110.a \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $43.53698649$ $[1, 1, 0, -22016028, -42247518768]$ \(y^2+xy=x^3+x^2-22016028x-42247518768\)
1110.a4 1110.a \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\Z/2\Z$ $10.88424662$ $[1, 1, 0, -1423388, -615252528]$ \(y^2+xy=x^3+x^2-1423388x-615252528\)
1110.b1 1110.b \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.369469171$ $[1, 1, 0, 2, -2]$ \(y^2+xy=x^3+x^2+2x-2\)
1110.c1 1110.c \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.215295008$ $[1, 1, 0, -3, 3]$ \(y^2+xy=x^3+x^2-3x+3\)
1110.d1 1110.d \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.201160027$ $[1, 1, 0, 203, -491]$ \(y^2+xy=x^3+x^2+203x-491\)
1110.e1 1110.e \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $4.037611764$ $[1, 0, 1, -7089, -230588]$ \(y^2+xy+y=x^3-7089x-230588\)
1110.e2 1110.e \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\Z/3\Z$ $1.345870588$ $[1, 0, 1, 126, -1484]$ \(y^2+xy+y=x^3+126x-1484\)
1110.f1 1110.f \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -184, 60806]$ \(y^2+xy+y=x^3-184x+60806\)
1110.g1 1110.g \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -320459, -14401618]$ \(y^2+xy+y=x^3-320459x-14401618\)
1110.g2 1110.g \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -195459, 33048382]$ \(y^2+xy+y=x^3-195459x+33048382\)
1110.g3 1110.g \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -195139, 33162686]$ \(y^2+xy+y=x^3-195139x+33162686\)
1110.g4 1110.g \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -75579, 73184206]$ \(y^2+xy+y=x^3-75579x+73184206\)
1110.h1 1110.h \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -10488, -185402]$ \(y^2+xy+y=x^3-10488x-185402\)
1110.h2 1110.h \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -5313, 148588]$ \(y^2+xy+y=x^3-5313x+148588\)
1110.h3 1110.h \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -313, 2588]$ \(y^2+xy+y=x^3-313x+2588\)
1110.h4 1110.h \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 2312, -21562]$ \(y^2+xy+y=x^3+2312x-21562\)
1110.i1 1110.i \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -21146, -1192057]$ \(y^2+xy+y=x^3+x^2-21146x-1192057\)
1110.i2 1110.i \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1146, -24057]$ \(y^2+xy+y=x^3+x^2-1146x-24057\)
1110.j1 1110.j \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.029997549$ $[1, 1, 1, -130, 527]$ \(y^2+xy+y=x^3+x^2-130x+527\)
1110.k1 1110.k \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -341005, 76503875]$ \(y^2+xy+y=x^3+x^2-341005x+76503875\)
1110.k2 1110.k \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -303125, -64083373]$ \(y^2+xy+y=x^3+x^2-303125x-64083373\)
1110.k3 1110.k \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -29325, 204867]$ \(y^2+xy+y=x^3+x^2-29325x+204867\)
1110.k4 1110.k \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -21325, 1187267]$ \(y^2+xy+y=x^3+x^2-21325x+1187267\)
1110.k5 1110.k \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -845, 32195]$ \(y^2+xy+y=x^3+x^2-845x+32195\)
1110.k6 1110.k \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 116475, 1779507]$ \(y^2+xy+y=x^3+x^2+116475x+1779507\)
1110.l1 1110.l \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -865, -10153]$ \(y^2+xy+y=x^3+x^2-865x-10153\)
1110.m1 1110.m \( 2 \cdot 3 \cdot 5 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.019139737$ $[1, 0, 0, -281, 2361]$ \(y^2+xy=x^3-281x+2361\)
1110.n1 1110.n \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -7364036, -7692307440]$ \(y^2+xy=x^3-7364036x-7692307440\)
1110.n2 1110.n \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -83396, -12375024]$ \(y^2+xy=x^3-83396x-12375024\)
1110.o1 1110.o \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -51, 135]$ \(y^2+xy=x^3-51x+135\)
1110.o2 1110.o \( 2 \cdot 3 \cdot 5 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1, 5]$ \(y^2+xy=x^3-x+5\)
  Download to