# Properties

 Label 11088br Number of curves 4 Conductor 11088 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("11088.k1")

sage: E.isogeny_class()

## Elliptic curves in class 11088br

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
11088.k4 11088br1 [0, 0, 0, -531, -154926]  18432 $$\Gamma_0(N)$$-optimal
11088.k3 11088br2 [0, 0, 0, -46611, -3832110] [2, 2] 36864
11088.k1 11088br3 [0, 0, 0, -743571, -246792366]  73728
11088.k2 11088br4 [0, 0, 0, -86931, 3788370]  73728

## Rank

sage: E.rank()

The elliptic curves in class 11088br have rank $$0$$.

## Modular form 11088.2.a.k

sage: E.q_eigenform(10)

$$q - 2q^{5} + q^{7} - q^{11} + 2q^{13} - 2q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 