Properties

Label 11088.j
Number of curves 2
Conductor 11088
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("11088.j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 11088.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
11088.j1 11088bb1 [0, 0, 0, -411, -1206] [2] 4608 \(\Gamma_0(N)\)-optimal
11088.j2 11088bb2 [0, 0, 0, 1509, -9270] [2] 9216  

Rank

sage: E.rank()
 

The elliptic curves in class 11088.j have rank \(1\).

Modular form 11088.2.a.j

sage: E.q_eigenform(10)
 
\( q - 2q^{5} + q^{7} - q^{11} - 4q^{13} - 2q^{17} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.