Properties

 Label 110670cp2 Conductor $110670$ Discriminant $2.689\times 10^{26}$ j-invariant $$\frac{1305195379419707692723460338574401}{268915325631261926400000000}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z \oplus \Z/{8}\Z$$

Related objects

Show commands: Magma / Oscar / PariGP / SageMath

Simplified equation

 $$y^2+xy=x^3-2276760100x+41806588162832$$ y^2+xy=x^3-2276760100x+41806588162832 (homogenize, simplify) $$y^2z+xyz=x^3-2276760100xz^2+41806588162832z^3$$ y^2z+xyz=x^3-2276760100xz^2+41806588162832z^3 (dehomogenize, simplify) $$y^2=x^3-2950681089627x+1950537029368358646$$ y^2=x^3-2950681089627x+1950537029368358646 (homogenize, minimize)

comment: Define the curve

sage: E = EllipticCurve([1, 0, 0, -2276760100, 41806588162832])

gp: E = ellinit([1, 0, 0, -2276760100, 41806588162832])

magma: E := EllipticCurve([1, 0, 0, -2276760100, 41806588162832]);

oscar: E = elliptic_curve([1, 0, 0, -2276760100, 41806588162832])

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

oscar: short_weierstrass_model(E)

Mordell-Weil group structure

$$\Z/{2}\Z \oplus \Z/{8}\Z$$

magma: MordellWeilGroup(E);

Torsion generators

$$\left(-55096, 27548\right)$$, $$\left(28604, 278648\right)$$

comment: Torsion subgroup

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

oscar: torsion_structure(E)

Integral points

$$\left(-55096, 27548\right)$$, $$\left(-9196, 7876448\right)$$, $$\left(-9196, -7867252\right)$$, $$\left(20792, 1848860\right)$$, $$\left(20792, -1869652\right)$$, $$\left(26504, 272348\right)$$, $$\left(26504, -298852\right)$$, $$\left(27848, -13924\right)$$, $$\left(28604, 278648\right)$$, $$\left(28604, -307252\right)$$, $$\left(34904, 2187548\right)$$, $$\left(34904, -2222452\right)$$, $$\left(93704, 25472348\right)$$, $$\left(93704, -25566052\right)$$

comment: Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

Invariants

 Conductor: $$110670$$ = $2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31$ comment: Conductor  sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E);  oscar: conductor(E) Discriminant: $268915325631261926400000000$ = $2^{16} \cdot 3^{8} \cdot 5^{8} \cdot 7^{8} \cdot 17^{2} \cdot 31^{2}$ comment: Discriminant  sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E);  oscar: discriminant(E) j-invariant: $$\frac{1305195379419707692723460338574401}{268915325631261926400000000}$$ = $2^{-16} \cdot 3^{-8} \cdot 5^{-8} \cdot 7^{-8} \cdot 17^{-2} \cdot 31^{-2} \cdot 73^{3} \cdot 1497047737^{3}$ comment: j-invariant  sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E);  oscar: j_invariant(E) Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $4.0683305484885477117869497643\dots$ gp: ellheight(E)  magma: FaltingsHeight(E);  oscar: faltings_height(E) Stable Faltings height: $4.0683305484885477117869497643\dots$ magma: StableFaltingsHeight(E);  oscar: stable_faltings_height(E) $abc$ quality: $1.014562548669828\dots$ Szpiro ratio: $6.56532100698919\dots$

BSD invariants

 Analytic rank: $0$ sage: E.analytic_rank()  gp: ellanalyticrank(E)  magma: AnalyticRank(E); Regulator: $1$ comment: Regulator  sage: E.regulator()  G = E.gen \\ if available matdet(ellheightmatrix(E,G))  magma: Regulator(E); Real period: $0.053552206489880490600271794593\dots$ comment: Real Period  sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Tamagawa product: $32768$  = $2^{4}\cdot2^{3}\cdot2^{3}\cdot2^{3}\cdot2\cdot2$ comment: Tamagawa numbers  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E);  oscar: tamagawa_numbers(E) Torsion order: $16$ comment: Torsion order  sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E));  oscar: prod(torsion_structure(E)[1]) Analytic order of Ш: $1$ ( exact) comment: Order of Sha  sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Special value: $L(E,1)$ ≈ $6.8546824307047027968347897079$ comment: Special L-value  r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: [r,L1r] = ellanalyticrank(E); L1r/r!  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

BSD formula

$\displaystyle 6.854682431 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.053552 \cdot 1.000000 \cdot 32768}{16^2} \approx 6.854682431$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)

E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;

Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();

omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();

assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))

/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */

E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;

sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);

reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);

assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);

Modular invariants

Modular form 110670.2.a.cm

$$q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 2 q^{13} + q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + 4 q^{19} + O(q^{20})$$

comment: q-expansion of modular form

sage: E.q_eigenform(20)

\\ actual modular form, use for small N

[mf,F] = mffromell(E)

Ser(mfcoefs(mf,20),q)

\\ or just the series

Ser(ellan(E,20),q)*q

magma: ModularForm(E);

Modular degree: 98566144
comment: Modular degree

sage: E.modular_degree()

gp: ellmoddegree(E)

magma: ModularDegree(E);

$\Gamma_0(N)$-optimal: no
Manin constant: 1
comment: Manin constant

magma: ManinConstant(E);

Local data

This elliptic curve is semistable. There are 6 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $16$ $I_{16}$ Split multiplicative -1 1 16 16
$3$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$5$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$7$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$17$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$31$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2

comment: Local data

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2Cs 8.96.0.40

comment: mod p Galois image

sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

gens = [[118049, 8, 0, 1], [1, 16, 0, 1], [57129, 16, 11618, 345], [177057, 16, 177056, 17], [15, 16, 224, 66641], [126489, 8, 50548, 177033], [5, 16, 4, 132817], [1, 0, 16, 1], [31249, 16, 10422, 97], [1, 16, 4, 65]]

GL(2,Integers(177072)).subgroup(gens)

Gens := [[118049, 8, 0, 1], [1, 16, 0, 1], [57129, 16, 11618, 345], [177057, 16, 177056, 17], [15, 16, 224, 66641], [126489, 8, 50548, 177033], [5, 16, 4, 132817], [1, 0, 16, 1], [31249, 16, 10422, 97], [1, 16, 4, 65]];

sub<GL(2,Integers(177072))|Gens>;

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level $$177072 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \cdot 31$$, index $768$, genus $13$, and generators

$\left(\begin{array}{rr} 118049 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 57129 & 16 \\ 11618 & 345 \end{array}\right),\left(\begin{array}{rr} 177057 & 16 \\ 177056 & 17 \end{array}\right),\left(\begin{array}{rr} 15 & 16 \\ 224 & 66641 \end{array}\right),\left(\begin{array}{rr} 126489 & 8 \\ 50548 & 177033 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 4 & 132817 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 31249 & 16 \\ 10422 & 97 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[177072])$ is a degree-$216569511464140800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/177072\Z)$.

Isogenies

gp: ellisomat(E)

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 110670cp consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{8}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $4$ $$\Q(i, \sqrt{527})$$ $$\Z/4\Z \oplus \Z/8\Z$$ Not in database $4$ $$\Q(\sqrt{-21}, \sqrt{51})$$ $$\Z/2\Z \oplus \Z/16\Z$$ Not in database $4$ $$\Q(\sqrt{21}, \sqrt{93})$$ $$\Z/2\Z \oplus \Z/16\Z$$ Not in database $8$ deg 8 $$\Z/2\Z \oplus \Z/24\Z$$ Not in database $16$ deg 16 $$\Z/8\Z \oplus \Z/8\Z$$ Not in database $16$ deg 16 $$\Z/4\Z \oplus \Z/16\Z$$ Not in database $16$ deg 16 $$\Z/4\Z \oplus \Z/16\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/32\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/32\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 17 31 split split split split split nonsplit 14 1 1 5 1 0 0 0 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.