Properties

Label 11025.bd4
Conductor 11025
Discriminant -1303115701421953125
j-invariant \( \frac{590589719}{972405} \)
CM no
Rank 1
Torsion Structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 0, 192708, -44277759]); // or
 
magma: E := EllipticCurve("11025x4");
 
sage: E = EllipticCurve([1, -1, 0, 192708, -44277759]) # or
 
sage: E = EllipticCurve("11025x4")
 
gp: E = ellinit([1, -1, 0, 192708, -44277759]) \\ or
 
gp: E = ellinit("11025x4")
 

\( y^2 + x y = x^{3} - x^{2} + 192708 x - 44277759 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

magma: Generators(E);
 
sage: E.gens()
 

\(P\) =  \( \left(240, 3849\right) \)
\(\hat{h}(P)\) ≈  2.23290154677

Torsion generators

magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 

\( \left(\frac{771}{4}, -\frac{771}{8}\right) \)

Integral points

magma: IntegralPoints(E);
 
sage: E.integral_points()
 

\( \left(240, 3849\right) \), \( \left(6624, 536913\right) \)

Note: only one of each pair $\pm P$ is listed.

Invariants

magma: Conductor(E);
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
Conductor: \( 11025 \)  =  \(3^{2} \cdot 5^{2} \cdot 7^{2}\)
magma: Discriminant(E);
 
sage: E.discriminant().factor()
 
gp: E.disc
 
Discriminant: \(-1303115701421953125 \)  =  \(-1 \cdot 3^{10} \cdot 5^{7} \cdot 7^{10} \)
magma: jInvariant(E);
 
sage: E.j_invariant().factor()
 
gp: E.j
 
j-invariant: \( \frac{590589719}{972405} \)  =  \(3^{-4} \cdot 5^{-1} \cdot 7^{-4} \cdot 839^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
 
sage: E.rank()
 
Rank: \(1\)
magma: Regulator(E);
 
sage: E.regulator()
 
Regulator: \(2.23290154677\)
magma: RealPeriod(E);
 
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
Real period: \(0.143053616329\)
magma: TamagawaNumbers(E);
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Tamagawa product: \( 64 \)  = \( 2^{2}\cdot2^{2}\cdot2^{2} \)
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
Torsion order: \(2\)
magma: MordellWeilShaInformation(E);
 
sage: E.sha().an_numerical()
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 11025.2.a.bd

magma: ModularForm(E);
 
sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 

\( q + q^{2} - q^{4} - 3q^{8} - 6q^{13} - q^{16} - 2q^{17} + 8q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
 
sage: E.modular_degree()
 
Modular degree: 147456
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 

\( L'(E,1) \) ≈ \( 5.11079425877 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(3\) \(4\) \( I_4^{*} \) Additive -1 2 10 4
\(5\) \(4\) \( I_1^{*} \) Additive 1 2 7 1
\(7\) \(4\) \( I_4^{*} \) Additive -1 2 10 4

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13b.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 4 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 
sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ordinary add add add ss ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) ? - - - 1,1 1 1 1 1 1 1 1 1 1 1
$\mu$-invariant(s) ? - - - 0,0 0 0 0 0 0 0 0 0 0 0

An entry ? indicates that the invariants have not yet been computed.

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 11025.bd consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{105}) \) \(\Z/4\Z\) Not in database
\(\Q(\sqrt{-21}) \) \(\Z/4\Z\) Not in database
\(\Q(\sqrt{-5}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
4 \(\Q(\sqrt{-5}, \sqrt{-21})\) \(\Z/2\Z \times \Z/4\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.