Properties

Label 110110bu
Number of curves $4$
Conductor $110110$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 110110bu have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 110110bu do not have complex multiplication.

Modular form 110110.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - q^{7} + q^{8} - 3 q^{9} - q^{10} + q^{13} - q^{14} + q^{16} - 2 q^{17} - 3 q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 110110bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
110110.cc3 110110bu1 \([1, -1, 1, -242023, -41865953]\) \(884984855328729/83492864000\) \(147912701640704000\) \([2]\) \(1228800\) \(2.0328\) \(\Gamma_0(N)\)-optimal
110110.cc2 110110bu2 \([1, -1, 1, -861543, 261203231]\) \(39920686684059609/6492304000000\) \(11501512566544000000\) \([2, 2]\) \(2457600\) \(2.3793\)  
110110.cc4 110110bu3 \([1, -1, 1, 1558457, 1462491231]\) \(236293804275620391/658593925444000\) \(-1166739313153498084000\) \([2]\) \(4915200\) \(2.7259\)  
110110.cc1 110110bu4 \([1, -1, 1, -13193863, 18448908767]\) \(143378317900125424089/4976562500000\) \(8816284039062500000\) \([2]\) \(4915200\) \(2.7259\)