# Properties

 Label 1100.e Number of curves 4 Conductor 1100 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("1100.e1")

sage: E.isogeny_class()

## Elliptic curves in class 1100.e

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1100.e1 1100b4 [0, -1, 0, -177508, -28726488]  5184
1100.e2 1100b3 [0, -1, 0, -11133, -442738]  2592
1100.e3 1100b2 [0, -1, 0, -2508, -26488]  1728
1100.e4 1100b1 [0, -1, 0, -1133, 14762]  864 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 1100.e have rank $$0$$.

## Modular form1100.2.a.e

sage: E.q_eigenform(10)

$$q + 2q^{3} + 4q^{7} + q^{9} - q^{11} + 4q^{13} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 