Properties

Label 1100.e
Number of curves $4$
Conductor $1100$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1100.e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1100.e do not have complex multiplication.

Modular form 1100.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + 4 q^{7} + q^{9} - q^{11} + 4 q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1100.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1100.e1 1100b4 \([0, -1, 0, -177508, -28726488]\) \(154639330142416/33275\) \(133100000000\) \([2]\) \(5184\) \(1.5192\)  
1100.e2 1100b3 \([0, -1, 0, -11133, -442738]\) \(610462990336/8857805\) \(2214451250000\) \([2]\) \(2592\) \(1.1726\)  
1100.e3 1100b2 \([0, -1, 0, -2508, -26488]\) \(436334416/171875\) \(687500000000\) \([2]\) \(1728\) \(0.96986\)  
1100.e4 1100b1 \([0, -1, 0, -1133, 14762]\) \(643956736/15125\) \(3781250000\) \([2]\) \(864\) \(0.62329\) \(\Gamma_0(N)\)-optimal