The first elliptic curve in nature. This is a model for the modular curve \(X_1(11)\).
Minimal Weierstrass equation
\(y^2+y=x^3-x^2\)
Mordell-Weil group structure
\(\Z/{5}\Z\)
Torsion generators
\( \left(0, 0\right) \)
Integral points
\( \left(0, 0\right) \), \( \left(0, -1\right) \), \( \left(1, 0\right) \), \( \left(1, -1\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 11 \) | = | \(11\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-11 \) | = | \(-1 \cdot 11 \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{4096}{11} \) | = | \(-1 \cdot 2^{12} \cdot 11^{-1}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(6.3460465213977671084439730838\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 1 \) = \( 1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(5\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 5 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 5 |
Special L-value
\( L(E,1) \) ≈ \( 0.25384186085591068433775892335043887465 \)
Local data
This elliptic curve is semistable. There is only one prime of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(11\) | \(1\) | \(I_{1}\) | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(5\) | B.1.1 |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 | 11 |
---|---|---|---|---|
Reduction type | ss | ordinary | ordinary | split |
$\lambda$-invariant(s) | 0,1 | 0 | 0 | 1 |
$\mu$-invariant(s) | 0,0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
5 and 25.
Its isogeny class 11.a
consists of 3 curves linked by isogenies of
degrees dividing 25.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{5}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.44.1 | \(\Z/10\Z\) | Not in database |
$5$ | \(\Q(\zeta_{11})^+\) | \(\Z/25\Z\) | 5.5.14641.1-11.1-a3 |
$6$ | 6.0.21296.1 | \(\Z/2\Z \times \Z/10\Z\) | Not in database |
$8$ | 8.2.32019867.1 | \(\Z/15\Z\) | Not in database |
$12$ | 12.2.20433779818496.3 | \(\Z/20\Z\) | Not in database |
$15$ | 15.5.35351257235385344.1 | \(\Z/50\Z\) | Not in database |
$20$ | 20.0.1402274470934209014892578125.2 | \(\Z/5\Z \times \Z/5\Z\) | Not in database |
$20$ | 20.0.95777233176300048828125.1 | \(\Z/25\Z\) | Not in database |
We only show fields where the torsion growth is primitive.