Show commands for:
SageMath
sage: E = EllipticCurve("a1")
sage: E.isogeny_class()
Elliptic curves in class 11.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
11.a1 | 11a2 | [0, -1, 1, -7820, -263580] | [] | 5 | |
11.a2 | 11a1 | [0, -1, 1, -10, -20] | [5] | 1 | \(\Gamma_0(N)\)-optimal |
11.a3 | 11a3 | [0, -1, 1, 0, 0] | [5] | 5 |
Rank
sage: E.rank()
The elliptic curves in class 11.a have rank \(0\).
Complex multiplication
The elliptic curves in class 11.a do not have complex multiplication.Modular form 11.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.