Properties

Label 1089h
Number of curves $2$
Conductor $1089$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1089h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1089.c2 1089h1 [1, -1, 1, -23, 168] [] 144 \(\Gamma_0(N)\)-optimal
1089.c1 1089h2 [1, -1, 1, -32693, -2267130] [] 1584  

Rank

sage: E.rank()
 

The elliptic curves in class 1089h have rank \(1\).

Complex multiplication

The elliptic curves in class 1089h do not have complex multiplication.

Modular form 1089.2.a.h

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{4} - q^{5} - 2q^{7} + 3q^{8} + q^{10} + q^{13} + 2q^{14} - q^{16} + 5q^{17} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.