Properties

Label 108900cb
Number of curves $2$
Conductor $108900$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 108900cb have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 108900cb do not have complex multiplication.

Modular form 108900.2.a.cb

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 4 q^{13} - 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 108900cb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
108900.cw2 108900cb1 \([0, 0, 0, 72600, -8651500]\) \(8192/11\) \(-56824590636000000\) \([]\) \(777600\) \(1.9007\) \(\Gamma_0(N)\)-optimal
108900.cw1 108900cb2 \([0, 0, 0, -2105400, -1182593500]\) \(-199794688/1331\) \(-6875775466956000000\) \([]\) \(2332800\) \(2.4500\)