Learn more

Refine search


Results (23 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
1089.a1 1089.a \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.177816633$ $[0, 0, 1, 33, -14]$ \(y^2+y=x^3+33x-14\) 6.2.0.a.1
1089.b1 1089.b \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $7.655751664$ $[0, 0, 1, -8516343, -9565943918]$ \(y^2+y=x^3-8516343x-9565943918\) 5.12.0.a.2, 22.2.0.a.1, 25.60.0.a.2, 30.24.0-5.a.2.1, 110.24.1.?, $\ldots$
1089.b2 1089.b \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.531150332$ $[0, 0, 1, -11253, -832208]$ \(y^2+y=x^3-11253x-832208\) 5.60.0.a.1, 22.2.0.a.1, 30.120.0-5.a.1.1, 110.120.5.?, 165.120.0.?, $\ldots$
1089.b3 1089.b \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.306230066$ $[0, 0, 1, -363, 6322]$ \(y^2+y=x^3-363x+6322\) 5.12.0.a.1, 22.2.0.a.1, 25.60.0.a.1, 30.24.0-5.a.1.1, 110.24.1.?, $\ldots$
1089.c1 1089.c \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.460386125$ $[1, -1, 1, -32693, -2267130]$ \(y^2+xy+y=x^3-x^2-32693x-2267130\) 4.2.0.a.1, 11.60.1.b.2, 24.4.0-4.a.1.1, 33.120.1-11.b.2.2, 44.120.6.b.2, $\ldots$
1089.c2 1089.c \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.132762375$ $[1, -1, 1, -23, 168]$ \(y^2+xy+y=x^3-x^2-23x+168\) 4.2.0.a.1, 11.60.1.b.1, 24.4.0-4.a.1.1, 33.120.1-11.b.1.2, 44.120.6.b.1, $\ldots$
1089.d1 1089.d \( 3^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -18173, 942274]$ \(y^2+xy+y=x^3-x^2-18173x+942274\) 2.3.0.a.1, 12.6.0.a.1, 44.6.0.e.1, 132.12.0.?
1089.d2 1089.d \( 3^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1838, -5156]$ \(y^2+xy+y=x^3-x^2-1838x-5156\) 2.3.0.a.1, 12.6.0.b.1, 44.6.0.e.1, 66.6.0.a.1, 132.12.0.?
1089.e1 1089.e \( 3^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, -40263]$ \(y^2+y=x^3-40263\)
1089.e2 1089.e \( 3^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, 1087094]$ \(y^2+y=x^3+1087094\)
1089.f1 1089.f \( 3^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, -817]$ \(y^2+y=x^3-817\)
1089.f2 1089.f \( 3^{2} \cdot 11^{2} \) $0$ $\Z/3\Z$ $-3$ $1$ $[0, 0, 1, 0, 30]$ \(y^2+y=x^3+30\)
1089.g1 1089.g \( 3^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $[0, 0, 1, -7986, 281839]$ \(y^2+y=x^3-7986x+281839\)
1089.g2 1089.g \( 3^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $[0, 0, 1, -66, -212]$ \(y^2+y=x^3-66x-212\)
1089.h1 1089.h \( 3^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2019, -34226]$ \(y^2+xy=x^3-x^2-2019x-34226\) 2.3.0.a.1, 12.6.0.a.1, 44.6.0.e.1, 132.12.0.?
1089.h2 1089.h \( 3^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -204, 259]$ \(y^2+xy=x^3-x^2-204x+259\) 2.3.0.a.1, 12.6.0.b.1, 44.6.0.e.1, 66.6.0.a.1, 132.12.0.?
1089.i1 1089.i \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $5.138097620$ $[1, -1, 0, -2745, -215726]$ \(y^2+xy=x^3-x^2-2745x-215726\) 4.2.0.a.1, 11.60.1.b.1, 33.120.1-11.b.1.1, 44.120.6.b.1, 88.240.16.?, $\ldots$
1089.i2 1089.i \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.467099783$ $[1, -1, 0, -270, 1777]$ \(y^2+xy=x^3-x^2-270x+1777\) 4.2.0.a.1, 11.60.1.b.2, 33.120.1-11.b.2.1, 44.120.6.b.2, 88.240.16.?, $\ldots$
1089.j1 1089.j \( 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.957701004$ $[1, -1, 0, -159561, 24548134]$ \(y^2+xy=x^3-x^2-159561x+24548134\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 12.12.0.h.1, 24.24.0-12.h.1.4, $\ldots$
1089.j2 1089.j \( 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.915402008$ $[1, -1, 0, -12546, 173047]$ \(y^2+xy=x^3-x^2-12546x+173047\) 2.6.0.a.1, 4.12.0-2.a.1.2, 12.24.0-12.a.1.4, 44.24.0-44.b.1.4, 132.48.0.?
1089.j3 1089.j \( 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.957701004$ $[1, -1, 0, -7101, -226616]$ \(y^2+xy=x^3-x^2-7101x-226616\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 12.12.0-4.c.1.2, 24.24.0-24.ba.1.13, $\ldots$
1089.j4 1089.j \( 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.957701004$ $[1, -1, 0, 47349, 1311052]$ \(y^2+xy=x^3-x^2+47349x+1311052\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 12.12.0-4.c.1.1, 22.6.0.a.1, $\ldots$
1089.k1 1089.k \( 3^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.677917086$ $[0, 0, 1, 3993, 18301]$ \(y^2+y=x^3+3993x+18301\) 6.2.0.a.1
  displayed columns for results