Properties

Label 10830.n
Number of curves $2$
Conductor $10830$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("10830.n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 10830.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
10830.n1 10830o2 [1, 0, 1, -10838, 426506] [2] 34560  
10830.n2 10830o1 [1, 0, 1, -8, 19298] [2] 17280 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 10830.n have rank \(0\).

Modular form 10830.2.a.n

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 2q^{7} - q^{8} + q^{9} - q^{10} + q^{12} - 6q^{13} + 2q^{14} + q^{15} + q^{16} + 8q^{17} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.