Properties

Label 10830.e3
Conductor $10830$
Discriminant $-9.617\times 10^{20}$
j-invariant \( -\frac{1914980734749238129}{20440940544000} \)
CM no
Rank $0$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, -9339438, -11090483532])
 
gp: E = ellinit([1, 1, 0, -9339438, -11090483532])
 
magma: E := EllipticCurve([1, 1, 0, -9339438, -11090483532]);
 

\(y^2+xy=x^3+x^2-9339438x-11090483532\)  Toggle raw display

Mordell-Weil group structure

\(\Z/{2}\Z\)

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(3532, -1766\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(3532, -1766\right) \)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 10830 \)  =  \(2 \cdot 3 \cdot 5 \cdot 19^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(-961662056361099264000 \)  =  \(-1 \cdot 2^{24} \cdot 3^{3} \cdot 5^{3} \cdot 19^{8} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{1914980734749238129}{20440940544000} \)  =  \(-1 \cdot 2^{-24} \cdot 3^{-3} \cdot 5^{-3} \cdot 19^{-2} \cdot 29^{3} \cdot 42821^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: \(2.8426991760548132154376891018\dots\)
Stable Faltings height: \(1.3704796864715929854331753859\dots\)

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(0\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.043153207555064631222951888523\dots\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 8 \)  = \( 2\cdot1\cdot1\cdot2^{2} \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(2\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(16\) = $4^2$ (exact)

Modular invariants

Modular form 10830.2.a.e

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + 2q^{7} - q^{8} + q^{9} + q^{10} + 6q^{11} - q^{12} + 4q^{13} - 2q^{14} + q^{15} + q^{16} - 6q^{17} - q^{18} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 1036800
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L(E,1) \) ≈ \( 1.3809026417620681991344604327427250554 \)

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \(I_{24}\) Non-split multiplicative 1 1 24 24
\(3\) \(1\) \(I_{3}\) Non-split multiplicative 1 1 3 3
\(5\) \(1\) \(I_{3}\) Non-split multiplicative 1 1 3 3
\(19\) \(4\) \(I_2^{*}\) Additive -1 2 8 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B
\(3\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 5 19
Reduction type nonsplit nonsplit nonsplit add
$\lambda$-invariant(s) 2 0 0 -
$\mu$-invariant(s) 0 0 0 -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 10830.e consists of 4 curves linked by isogenies of degrees dividing 6.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-15}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{-19}) \) \(\Z/6\Z\) Not in database
$4$ 4.2.86640.4 \(\Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-15}, \sqrt{-19})\) \(\Z/2\Z \times \Z/6\Z\) Not in database
$6$ 6.2.66854673.1 \(\Z/6\Z\) Not in database
$8$ 8.0.23751002250000.18 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.1688960160000.19 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.7506489600.4 \(\Z/12\Z\) Not in database
$12$ 12.0.4469547301936929.2 \(\Z/3\Z \times \Z/6\Z\) Not in database
$12$ Deg 12 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/12\Z\) Not in database
$18$ 18.0.35464545783814791103364941321383936.1 \(\Z/18\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.