# Properties

 Label 10830.b Number of curves $2$ Conductor $10830$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("10830.b1")

sage: E.isogeny_class()

## Elliptic curves in class 10830.b

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
10830.b1 10830c2 [1, 1, 0, -11536123, 15092997727] [] 738720
10830.b2 10830c1 [1, 1, 0, 192767, 96438973] [] 246240 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 10830.b have rank $$0$$.

## Modular form 10830.2.a.b

sage: E.q_eigenform(10)

$$q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 3q^{11} - q^{12} - 2q^{13} + q^{14} + q^{15} + q^{16} - 6q^{17} - q^{18} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 