Properties

Label 10830.b
Number of curves 2
Conductor 10830
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("10830.b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 10830.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
10830.b1 10830c2 [1, 1, 0, -11536123, 15092997727] [] 738720  
10830.b2 10830c1 [1, 1, 0, 192767, 96438973] [] 246240 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 10830.b have rank \(0\).

Modular form 10830.2.a.b

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 3q^{11} - q^{12} - 2q^{13} + q^{14} + q^{15} + q^{16} - 6q^{17} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.