Properties

Label 1080f
Number of curves $1$
Conductor $1080$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1080f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1080.g1 1080f1 \([0, 0, 0, -1647, 26811]\) \(-1568892672/78125\) \(-24603750000\) \([]\) \(1008\) \(0.75498\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1080f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1080f do not have complex multiplication.

Modular form 1080.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} - 2 q^{11} + 4 q^{13} - q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display