Properties

Label 1080.j
Number of curves $1$
Conductor $1080$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1080.j1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1080.j do not have complex multiplication.

Modular form 1080.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 2 q^{11} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1080.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1080.j1 1080l1 \([0, 0, 0, -27, -189]\) \(-768/5\) \(-14171760\) \([]\) \(144\) \(0.055686\) \(\Gamma_0(N)\)-optimal