Properties

Label 1080.d
Number of curves $1$
Conductor $1080$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 1080.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1080.d1 1080a1 \([0, 0, 0, -3, 7]\) \(-768/5\) \(-19440\) \([]\) \(48\) \(-0.49362\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1080.d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1080.d do not have complex multiplication.

Modular form 1080.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{11} - 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display