Show commands for:
SageMath
sage: E = EllipticCurve("ff1")
sage: E.isogeny_class()
Elliptic curves in class 107712ff
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
107712.bs1 | 107712ff1 | [0, 0, 0, -520716, 143483920] | [2] | 1720320 | \(\Gamma_0(N)\)-optimal |
107712.bs2 | 107712ff2 | [0, 0, 0, -152076, 342696976] | [2] | 3440640 |
Rank
sage: E.rank()
The elliptic curves in class 107712ff have rank \(1\).
Complex multiplication
The elliptic curves in class 107712ff do not have complex multiplication.Modular form 107712.2.a.ff
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.