# Properties

 Label 10766.e Number of curves 2 Conductor 10766 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("10766.e1")
sage: E.isogeny_class()

## Elliptic curves in class 10766.e

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
10766.e1 10766h1 [1, -1, 1, -450273, 116420913] 7 204624 $$\Gamma_0(N)$$-optimal
10766.e2 10766h2 [1, -1, 1, 2885367, -4130671167] 1 1432368

## Rank

sage: E.rank()

The elliptic curves in class 10766.e have rank $$1$$.

## Modular form 10766.2.a.e

sage: E.q_eigenform(10)
$$q + q^{2} - 3q^{3} + q^{4} - q^{5} - 3q^{6} + q^{7} + q^{8} + 6q^{9} - q^{10} + 5q^{11} - 3q^{12} + q^{14} + 3q^{15} + q^{16} + 4q^{17} + 6q^{18} - q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 