# Properties

 Label 106470ce1 Conductor 106470 Discriminant 21281362266528000 j-invariant $$\frac{13619385906841}{6048000}$$ CM no Rank 1 Torsion Structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 0, -756729, -253085715]) # or

sage: E = EllipticCurve("106470ce1")

gp: E = ellinit([1, -1, 0, -756729, -253085715]) \\ or

gp: E = ellinit("106470ce1")

magma: E := EllipticCurve([1, -1, 0, -756729, -253085715]); // or

magma: E := EllipticCurve("106470ce1");

$$y^2 + x y = x^{3} - x^{2} - 756729 x - 253085715$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(-494, 287\right)$$ $$\hat{h}(P)$$ ≈ 2.585293282406155

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-510, 255\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-510, 255\right)$$, $$\left(-494, 287\right)$$, $$\left(-494, 207\right)$$, $$\left(1011, 3297\right)$$, $$\left(1011, -4308\right)$$, $$\left(90091, 26994537\right)$$, $$\left(90091, -27084628\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$106470$$ = $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$21281362266528000$$ = $$2^{8} \cdot 3^{9} \cdot 5^{3} \cdot 7 \cdot 13^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{13619385906841}{6048000}$$ = $$2^{-8} \cdot 3^{-3} \cdot 5^{-3} \cdot 7^{-1} \cdot 11^{3} \cdot 13^{3} \cdot 167^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$2.58529328241$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.161873593576$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$48$$  = $$2\cdot2\cdot3\cdot1\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 106470.2.a.cg

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{4} + q^{5} - q^{7} - q^{8} - q^{10} + q^{14} + q^{16} + 6q^{17} - 8q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1769472 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$5.02188856886$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{8}$$ Non-split multiplicative 1 1 8 8
$$3$$ $$2$$ $$I_3^{*}$$ Additive -1 2 9 3
$$5$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$7$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$13$$ $$4$$ $$I_0^{*}$$ Additive 1 2 6 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 6.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit add split nonsplit ss add ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ss 5 - 2 1 1,1 - 1 1 1,1 1 1 1 1 1 1,1 0 - 0 0 0,0 - 0 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 4, 6 and 12.
Its isogeny class 106470ce consists of 8 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-39})$$ $$\Z/6\Z$$ Not in database
$$\Q(\sqrt{-91})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{-195})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{105})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
4 $$\Q(\sqrt{5}, \sqrt{-39})$$ $$\Z/12\Z$$ Not in database
$$\Q(\sqrt{21}, \sqrt{-39})$$ $$\Z/12\Z$$ Not in database
$$\Q(\sqrt{-91}, \sqrt{105})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$$\Q(\sqrt{-39}, \sqrt{105})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database
6 6.2.759599568.1 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.