Show commands for:
SageMath
sage: E = EllipticCurve("bg1")
sage: E.isogeny_class()
Elliptic curves in class 106470.bg
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
106470.bg1 | 106470bu4 | [1, -1, 0, -568125, -164679449] | [2] | 1179648 | |
106470.bg2 | 106470bu2 | [1, -1, 0, -35775, -2525639] | [2, 2] | 589824 | |
106470.bg3 | 106470bu1 | [1, -1, 0, -5355, 96565] | [2] | 294912 | \(\Gamma_0(N)\)-optimal |
106470.bg4 | 106470bu3 | [1, -1, 0, 9855, -8557925] | [2] | 1179648 |
Rank
sage: E.rank()
The elliptic curves in class 106470.bg have rank \(1\).
Complex multiplication
The elliptic curves in class 106470.bg do not have complex multiplication.Modular form 106470.2.a.bg
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.