Properties

Label 105222.j
Number of curves $2$
Conductor $105222$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 105222.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
105222.j1 105222i2 \([1, 1, 1, -180635687, 899709589469]\) \(651830049594992807318443118833/27463741155896711966097408\) \(27463741155896711966097408\) \([2]\) \(42024960\) \(3.6459\)  
105222.j2 105222i1 \([1, 1, 1, 5486553, 52257806301]\) \(18265116376750268914741007/1190206309258976028524544\) \(-1190206309258976028524544\) \([2]\) \(21012480\) \(3.2993\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 105222.j have rank \(0\).

Complex multiplication

The elliptic curves in class 105222.j do not have complex multiplication.

Modular form 105222.2.a.j

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + 2 q^{5} - q^{6} + 4 q^{7} + q^{8} + q^{9} + 2 q^{10} + 4 q^{11} - q^{12} + q^{13} + 4 q^{14} - 2 q^{15} + q^{16} + 4 q^{17} + q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.