Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
105222.a1 |
105222a1 |
105222.a |
105222a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{14} \cdot 3^{15} \cdot 13 \cdot 19^{5} \cdot 71^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$105222$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$30744000$ |
$3.649319$ |
$-6422702156736768640679034611881/2708477070763914747887616$ |
$1.00367$ |
$6.13448$ |
$[1, 1, 0, -387255882, 2934130628052]$ |
\(y^2+xy=x^3+x^2-387255882x+2934130628052\) |
105222.2.0.? |
$[]$ |
105222.b1 |
105222b4 |
105222.b |
105222b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( 2^{2} \cdot 3^{3} \cdot 13^{2} \cdot 19^{4} \cdot 71 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$32376$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2359296$ |
$2.237671$ |
$36511337301844186615503097/168881941332$ |
$0.97106$ |
$5.08998$ |
$[1, 0, 1, -6911432, 6993013394]$ |
\(y^2+xy+y=x^3-6911432x+6993013394\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 152.12.0.?, 284.12.0.?, $\ldots$ |
$[]$ |
105222.b2 |
105222b2 |
105222.b |
105222b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( 2^{4} \cdot 3^{6} \cdot 13^{4} \cdot 19^{2} \cdot 71^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$16188$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$1179648$ |
$1.891098$ |
$8914337209565554814137/606240323314704$ |
$0.97061$ |
$4.37069$ |
$[1, 0, 1, -431972, 109235090]$ |
\(y^2+xy+y=x^3-431972x+109235090\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 76.12.0.?, 228.24.0.?, 284.12.0.?, $\ldots$ |
$[]$ |
105222.b3 |
105222b3 |
105222.b |
105222b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{2} \cdot 3^{12} \cdot 13^{8} \cdot 19 \cdot 71 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$32376$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2359296$ |
$2.237671$ |
$-7346178961154982260857/2339234799533993556$ |
$0.97422$ |
$4.39187$ |
$[1, 0, 1, -404992, 123480530]$ |
\(y^2+xy+y=x^3-404992x+123480530\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 76.12.0.?, 284.12.0.?, $\ldots$ |
$[]$ |
105222.b4 |
105222b1 |
105222.b |
105222b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( 2^{8} \cdot 3^{3} \cdot 13^{2} \cdot 19 \cdot 71^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$32376$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$589824$ |
$1.544523$ |
$2612067645573808057/563997825960192$ |
$0.94820$ |
$3.66718$ |
$[1, 0, 1, -28692, 1478674]$ |
\(y^2+xy+y=x^3-28692x+1478674\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 76.12.0.?, 114.6.0.?, $\ldots$ |
$[]$ |
105222.c1 |
105222c2 |
105222.c |
105222c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( 2^{3} \cdot 3^{2} \cdot 13^{8} \cdot 19^{2} \cdot 71^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$32376$ |
$12$ |
$0$ |
$13.85448848$ |
$1$ |
|
$0$ |
$4313088$ |
$2.745983$ |
$396465549446144137001577625/7588598278194935352$ |
$0.97833$ |
$5.29622$ |
$[1, 0, 1, -15304786, -23046545524]$ |
\(y^2+xy+y=x^3-15304786x-23046545524\) |
2.3.0.a.1, 228.6.0.?, 568.6.0.?, 32376.12.0.? |
$[(90956440/139, 251832633473/139)]$ |
105222.c2 |
105222c1 |
105222.c |
105222c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( 2^{6} \cdot 3 \cdot 13^{4} \cdot 19 \cdot 71^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$32376$ |
$12$ |
$0$ |
$6.927244242$ |
$1$ |
|
$1$ |
$2156544$ |
$2.399410$ |
$106770212554273662201625/13346836218678900288$ |
$0.95318$ |
$4.58542$ |
$[1, 0, 1, -988346, -334945108]$ |
\(y^2+xy+y=x^3-988346x-334945108\) |
2.3.0.a.1, 114.6.0.?, 568.6.0.?, 32376.12.0.? |
$[(-366034/25, -98005839/25)]$ |
105222.d1 |
105222g2 |
105222.d |
105222g |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( 2^{13} \cdot 3^{10} \cdot 13^{2} \cdot 19^{4} \cdot 71 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$22152$ |
$12$ |
$0$ |
$0.372786635$ |
$1$ |
|
$10$ |
$3394560$ |
$2.421013$ |
$3225875927558062594377457/756418162059436032$ |
$0.99625$ |
$4.88015$ |
$[1, 1, 1, -3078279, 2077083645]$ |
\(y^2+xy+y=x^3+x^2-3078279x+2077083645\) |
2.3.0.a.1, 156.6.0.?, 568.6.0.?, 22152.12.0.? |
$[(939, 3482)]$ |
105222.d2 |
105222g1 |
105222.d |
105222g |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{26} \cdot 3^{5} \cdot 13 \cdot 19^{2} \cdot 71^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$22152$ |
$12$ |
$0$ |
$0.745573271$ |
$1$ |
|
$9$ |
$1697280$ |
$2.074440$ |
$-544480505772136122097/385792173120946176$ |
$0.93804$ |
$4.19808$ |
$[1, 1, 1, -170119, 40208381]$ |
\(y^2+xy+y=x^3+x^2-170119x+40208381\) |
2.3.0.a.1, 78.6.0.?, 568.6.0.?, 22152.12.0.? |
$[(67, 5362)]$ |
105222.e1 |
105222h1 |
105222.e |
105222h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{13} \cdot 3^{6} \cdot 13^{2} \cdot 19^{3} \cdot 71 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$10792$ |
$2$ |
$0$ |
$0.158558577$ |
$1$ |
|
$26$ |
$584064$ |
$1.648674$ |
$-64024627158163005697/491499780415488$ |
$0.92020$ |
$3.94497$ |
$[1, 1, 1, -83344, 9287537]$ |
\(y^2+xy+y=x^3+x^2-83344x+9287537\) |
10792.2.0.? |
$[(209, 921), (285, 2821)]$ |
105222.f1 |
105222d2 |
105222.f |
105222d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( 2 \cdot 3^{6} \cdot 13^{4} \cdot 19 \cdot 71^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$10792$ |
$12$ |
$0$ |
$5.874466962$ |
$1$ |
|
$0$ |
$546816$ |
$1.570692$ |
$354851754919093920097/3988423179702$ |
$0.92789$ |
$4.09192$ |
$[1, 1, 1, -147494, 21741005]$ |
\(y^2+xy+y=x^3+x^2-147494x+21741005\) |
2.3.0.a.1, 152.6.0.?, 284.6.0.?, 10792.12.0.? |
$[(1757/4, 164369/4)]$ |
105222.f2 |
105222d1 |
105222.f |
105222d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{2} \cdot 3^{12} \cdot 13^{2} \cdot 19^{2} \cdot 71 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$10792$ |
$12$ |
$0$ |
$2.937233481$ |
$1$ |
|
$3$ |
$273408$ |
$1.224119$ |
$-80192908147326337/9208042247196$ |
$0.88691$ |
$3.38160$ |
$[1, 1, 1, -8984, 355061]$ |
\(y^2+xy+y=x^3+x^2-8984x+355061\) |
2.3.0.a.1, 142.6.0.?, 152.6.0.?, 10792.12.0.? |
$[(89, 475)]$ |
105222.g1 |
105222f1 |
105222.g |
105222f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{16} \cdot 3 \cdot 13 \cdot 19^{3} \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$105222$ |
$2$ |
$0$ |
$0.176067268$ |
$1$ |
|
$6$ |
$268800$ |
$1.082800$ |
$-25662194421025681/1244697133056$ |
$0.87871$ |
$3.27437$ |
$[1, 1, 1, -6145, 190463]$ |
\(y^2+xy+y=x^3+x^2-6145x+190463\) |
105222.2.0.? |
$[(127, 1152)]$ |
105222.h1 |
105222e1 |
105222.h |
105222e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2 \cdot 3^{4} \cdot 13^{11} \cdot 19^{7} \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$140296$ |
$2$ |
$0$ |
$33.44085551$ |
$1$ |
|
$0$ |
$25872000$ |
$3.559589$ |
$-53850737433335065447138796881/18425761494880921390785186$ |
$0.99543$ |
$5.76111$ |
$[1, 1, 1, -78672445, -338839860571]$ |
\(y^2+xy+y=x^3+x^2-78672445x-338839860571\) |
140296.2.0.? |
$[(12037961577916691/289138, 1316458988084741856289161/289138)]$ |
105222.i1 |
105222j1 |
105222.i |
105222j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{3} \cdot 3^{6} \cdot 13^{10} \cdot 19 \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$10792$ |
$2$ |
$0$ |
$0.667897645$ |
$1$ |
|
$2$ |
$1872000$ |
$2.231148$ |
$-28987906595935743520273/1084583487301083432$ |
$0.94675$ |
$4.47809$ |
$[1, 1, 1, -639977, 203062079]$ |
\(y^2+xy+y=x^3+x^2-639977x+203062079\) |
10792.2.0.? |
$[(981, 22324)]$ |
105222.j1 |
105222i2 |
105222.j |
105222i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( 2^{19} \cdot 3^{2} \cdot 13^{6} \cdot 19^{8} \cdot 71 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$22152$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$42024960$ |
$3.645851$ |
$651830049594992807318443118833/27463741155896711966097408$ |
$0.99877$ |
$5.93658$ |
$[1, 1, 1, -180635687, 899709589469]$ |
\(y^2+xy+y=x^3+x^2-180635687x+899709589469\) |
2.3.0.a.1, 156.6.0.?, 568.6.0.?, 22152.12.0.? |
$[]$ |
105222.j2 |
105222i1 |
105222.j |
105222i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{38} \cdot 3 \cdot 13^{3} \cdot 19^{4} \cdot 71^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$22152$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$21012480$ |
$3.299278$ |
$18265116376750268914741007/1190206309258976028524544$ |
$1.00797$ |
$5.43782$ |
$[1, 1, 1, 5486553, 52257806301]$ |
\(y^2+xy+y=x^3+x^2+5486553x+52257806301\) |
2.3.0.a.1, 78.6.0.?, 568.6.0.?, 22152.12.0.? |
$[]$ |
105222.k1 |
105222l1 |
105222.k |
105222l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{8} \cdot 3^{5} \cdot 13 \cdot 19 \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$105222$ |
$2$ |
$0$ |
$0.376899191$ |
$1$ |
|
$6$ |
$52480$ |
$0.418273$ |
$478762350767/1090941696$ |
$0.81893$ |
$2.41893$ |
$[1, 0, 0, 163, -1359]$ |
\(y^2+xy=x^3+163x-1359\) |
105222.2.0.? |
$[(10, 31)]$ |
105222.l1 |
105222k2 |
105222.l |
105222k |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{4} \cdot 3 \cdot 13^{7} \cdot 19 \cdot 71^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$7$ |
7.48.0.5 |
7B.1.3 |
$736554$ |
$96$ |
$2$ |
$59.03134116$ |
$1$ |
|
$0$ |
$87588480$ |
$4.204720$ |
$-176352252185278046480312672913502369/520483235310766404806064$ |
$1.02478$ |
$7.01825$ |
$[1, 0, 0, -11682947706, -486046291388268]$ |
\(y^2+xy=x^3-11682947706x-486046291388268\) |
7.48.0-7.a.2.2, 105222.2.0.?, 736554.96.2.? |
$[(70033318448599980604531934/6783777665, 584322049528247216641612560504210040672/6783777665)]$ |
105222.l2 |
105222k1 |
105222.l |
105222k |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 13 \cdot 19 \cdot 71 \) |
\( - 2^{28} \cdot 3^{7} \cdot 13 \cdot 19^{7} \cdot 71 \) |
$1$ |
$\Z/7\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$7$ |
7.48.0.1 |
7B.1.1 |
$736554$ |
$96$ |
$2$ |
$8.433048737$ |
$1$ |
|
$8$ |
$12512640$ |
$3.231766$ |
$493769165839269808367640671/484356987417093822480384$ |
$0.99025$ |
$5.31520$ |
$[1, 0, 0, 16466454, -21440352348]$ |
\(y^2+xy=x^3+16466454x-21440352348\) |
7.48.0-7.a.1.2, 105222.2.0.?, 736554.96.2.? |
$[(1520244, 1873679814)]$ |