# Properties

 Label 1050j1 Conductor $1050$ Discriminant $-945000$ j-invariant $$\frac{2595575}{1512}$$ CM no Rank $0$ Torsion structure $$\Z/{3}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, 24, -2])

gp: E = ellinit([1, 0, 1, 24, -2])

magma: E := EllipticCurve([1, 0, 1, 24, -2]);

$$y^2+xy+y=x^3+24x-2$$

## Mordell-Weil group structure

$\Z/{3}\Z$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(2, 6\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(2, 6\right)$$, $$\left(2, -9\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$1050$$ = $2 \cdot 3 \cdot 5^{2} \cdot 7$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-945000$ = $-1 \cdot 2^{3} \cdot 3^{3} \cdot 5^{4} \cdot 7$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{2595575}{1512}$$ = $2^{-3} \cdot 3^{-3} \cdot 5^{2} \cdot 7^{-1} \cdot 47^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $-0.16398872437299631120187881083\dots$ Stable Faltings height: $-0.70046802851769643606879858857\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $1.6484845233999377334860503117\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $9$  = $1\cdot3\cdot3\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $3$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $1.6484845233999377334860503117004626849$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{3} + q^{4} - q^{6} + q^{7} - q^{8} + q^{9} + 6q^{11} + q^{12} - q^{13} - q^{14} + q^{16} + 3q^{17} - q^{18} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 216 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3
$3$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$5$ $3$ $IV$ Additive -1 2 4 0
$7$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B.1.1 3.8.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 nonsplit split add split 1 1 - 1 0 0 - 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 1050j consists of 2 curves linked by isogenies of degree 3.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.4200.1 $$\Z/6\Z$$ Not in database $6$ 6.0.2963520000.1 $$\Z/2\Z \times \Z/6\Z$$ Not in database $6$ 6.0.40516875.1 $$\Z/3\Z \times \Z/3\Z$$ Not in database $9$ 9.3.538308214171875.1 $$\Z/9\Z$$ Not in database $12$ Deg 12 $$\Z/12\Z$$ Not in database $18$ 18.0.854365743544759488000000000000.1 $$\Z/3\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.