Properties

Label 1050i1
Conductor $1050$
Discriminant $3402000$
j-invariant \( \frac{4386781853}{27216} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -171, 838])
 
gp: E = ellinit([1, 0, 1, -171, 838])
 
magma: E := EllipticCurve([1, 0, 1, -171, 838]);
 

Minimal equation

Minimal equation

Simplified equation

\(y^2+xy+y=x^3-171x+838\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz+yz^2=x^3-171xz^2+838z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-220995x+39772350\) Copy content Toggle raw display (homogenize, minimize)

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(2, 21\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $0.16875893648028187333446620325$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(7, -4\right) \) Copy content Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-13, 36\right) \), \( \left(-13, -24\right) \), \( \left(2, 21\right) \), \( \left(2, -24\right) \), \( \left(7, -4\right) \), \( \left(8, -3\right) \), \( \left(8, -6\right) \), \( \left(11, 12\right) \), \( \left(11, -24\right) \), \( \left(23, 84\right) \), \( \left(23, -108\right) \), \( \left(56, 381\right) \), \( \left(56, -438\right) \) Copy content Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 1050 \)  =  $2 \cdot 3 \cdot 5^{2} \cdot 7$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $3402000 $  =  $2^{4} \cdot 3^{5} \cdot 5^{3} \cdot 7 $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{4386781853}{27216} \)  =  $2^{-4} \cdot 3^{-5} \cdot 7^{-1} \cdot 1637^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $0.091346603799118917943577558753\dots$
Stable Faltings height: $-0.31101287430940617570661227455\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $0.16875893648028187333446620325\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $2.5211567220374541509662547583\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 20 $  = $ 2\cdot5\cdot2\cdot1 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 2.1273386355557719404788954866 $

Modular invariants

Modular form   1050.2.a.g

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} + q^{9} - 2 q^{11} + q^{12} - 2 q^{13} + q^{14} + q^{16} - 8 q^{17} - q^{18} - 2 q^{19} + O(q^{20}) \) Copy content Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 320
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4
$3$ $5$ $I_{5}$ Split multiplicative -1 1 5 5
$5$ $2$ $III$ Additive -1 2 3 0
$7$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit split add nonsplit ord ord ord ord ss ord ord ord ord ord ord
$\lambda$-invariant(s) 1 8 - 1 1 1 1 1 1,1 1 1 1 1 1 1
$\mu$-invariant(s) 0 0 - 0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 1050i consists of 2 curves linked by isogenies of degree 2.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{105}) \) \(\Z/2\Z \oplus \Z/2\Z\) Not in database
$4$ 4.0.42000.2 \(\Z/4\Z\) Not in database
$8$ 8.4.21441530250000.10 \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$8$ 8.0.777924000000.11 \(\Z/2\Z \oplus \Z/4\Z\) Not in database
$8$ 8.2.106332486750000.8 \(\Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \oplus \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.