Properties

Label 1050.o
Number of curves $1$
Conductor $1050$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1050.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1050.o1 1050q1 \([1, 0, 0, -763, -9733]\) \(-125768785/30618\) \(-11960156250\) \([]\) \(840\) \(0.65217\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1050.o1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1050.o do not have complex multiplication.

Modular form 1050.2.a.o

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - q^{7} + q^{8} + q^{9} + 2q^{11} + q^{12} + q^{13} - q^{14} + q^{16} - q^{17} + q^{18} + 4q^{19} + O(q^{20})\)  Toggle raw display