Properties

Label 1050.n
Number of curves $1$
Conductor $1050$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1050.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1050.n1 1050n1 \([1, 1, 1, -157388, -24115219]\) \(-1103770289367265/891813888\) \(-348364800000000\) \([]\) \(11400\) \(1.7200\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1050.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1050.n do not have complex multiplication.

Modular form 1050.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} + q^{7} + q^{8} + q^{9} - 2q^{11} - q^{12} + 7q^{13} + q^{14} + q^{16} - 7q^{17} + q^{18} + 8q^{19} + O(q^{20})\)  Toggle raw display