Properties

Label 1050.f
Number of curves $1$
Conductor $1050$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1050.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1050.f1 1050f1 \([1, 0, 1, -6296, -192922]\) \(-1103770289367265/891813888\) \(-22295347200\) \([]\) \(2280\) \(0.91523\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1050.f1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1050.f do not have complex multiplication.

Modular form 1050.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} + q^{9} - 2q^{11} + q^{12} - 7q^{13} + q^{14} + q^{16} + 7q^{17} - q^{18} + 8q^{19} + O(q^{20})\)  Toggle raw display