Properties

Label 1050.e
Number of curves $1$
Conductor $1050$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1050.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1050.e1 1050b1 \([1, 1, 0, -30, -90]\) \(-125768785/30618\) \(-765450\) \([]\) \(168\) \(-0.15255\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1050.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1050.e do not have complex multiplication.

Modular form 1050.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + q^{7} - q^{8} + q^{9} + 2q^{11} - q^{12} - q^{13} - q^{14} + q^{16} + q^{17} - q^{18} + 4q^{19} + O(q^{20})\)  Toggle raw display