Show commands: SageMath
Rank
The elliptic curves in class 104222a have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 104222a do not have complex multiplication.Modular form 104222.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 104222a
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 104222.b4 | 104222a1 | \([1, -1, 1, -1156, 75671]\) | \(-35937/496\) | \(-2356051703536\) | \([2]\) | \(138240\) | \(1.0556\) | \(\Gamma_0(N)\)-optimal |
| 104222.b3 | 104222a2 | \([1, -1, 1, -34776, 2496311]\) | \(979146657/3844\) | \(18259400702404\) | \([2, 2]\) | \(276480\) | \(1.4021\) | |
| 104222.b2 | 104222a3 | \([1, -1, 1, -51586, -152945]\) | \(3196010817/1847042\) | \(8773642037505122\) | \([2]\) | \(552960\) | \(1.7487\) | |
| 104222.b1 | 104222a4 | \([1, -1, 1, -555886, 159663087]\) | \(3999236143617/62\) | \(294506462942\) | \([2]\) | \(552960\) | \(1.7487\) |