Properties

Label 104222a
Number of curves $4$
Conductor $104222$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 104222a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(31\)\(1 + T\)
\(41\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 104222a do not have complex multiplication.

Modular form 104222.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 3 q^{9} - 2 q^{10} - 2 q^{13} + q^{16} + 6 q^{17} - 3 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 104222a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
104222.b4 104222a1 \([1, -1, 1, -1156, 75671]\) \(-35937/496\) \(-2356051703536\) \([2]\) \(138240\) \(1.0556\) \(\Gamma_0(N)\)-optimal
104222.b3 104222a2 \([1, -1, 1, -34776, 2496311]\) \(979146657/3844\) \(18259400702404\) \([2, 2]\) \(276480\) \(1.4021\)  
104222.b2 104222a3 \([1, -1, 1, -51586, -152945]\) \(3196010817/1847042\) \(8773642037505122\) \([2]\) \(552960\) \(1.7487\)  
104222.b1 104222a4 \([1, -1, 1, -555886, 159663087]\) \(3999236143617/62\) \(294506462942\) \([2]\) \(552960\) \(1.7487\)