# Properties

 Label 103488hy Number of curves 6 Conductor 103488 CM no Rank 0 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("103488.fn1")

sage: E.isogeny_class()

## Elliptic curves in class 103488hy

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
103488.fn4 103488hy1 [0, 1, 0, -106689, 13373247] [2] 491520 $$\Gamma_0(N)$$-optimal
103488.fn3 103488hy2 [0, 1, 0, -122369, 9167871] [2, 2] 983040
103488.fn6 103488hy3 [0, 1, 0, 395071, 66810687] [2] 1966080
103488.fn2 103488hy4 [0, 1, 0, -890689, -317368129] [2, 2] 1966080
103488.fn5 103488hy5 [0, 1, 0, 97151, -981789313] [2] 3932160
103488.fn1 103488hy6 [0, 1, 0, -14171649, -20538957825] [2] 3932160

## Rank

sage: E.rank()

The elliptic curves in class 103488hy have rank $$0$$.

## Modular form 103488.2.a.fn

sage: E.q_eigenform(10)

$$q + q^{3} - 2q^{5} + q^{9} - q^{11} + 6q^{13} - 2q^{15} - 2q^{17} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.