Properties

Label 103488gi
Number of curves 2
Conductor 103488
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("103488.dt1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 103488gi

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
103488.dt2 103488gi1 [0, -1, 0, 523, -2715] [2] 69120 \(\Gamma_0(N)\)-optimal
103488.dt1 103488gi2 [0, -1, 0, -2417, -20943] [2] 138240  

Rank

sage: E.rank()
 

The elliptic curves in class 103488gi have rank \(0\).

Modular form 103488.2.a.dt

sage: E.q_eigenform(10)
 
\( q - q^{3} + 2q^{5} + q^{9} + q^{11} - 2q^{13} - 2q^{15} - 4q^{17} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.