Properties

Label 103488ds
Number of curves 4
Conductor 103488
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("103488.hb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 103488ds

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
103488.hb3 103488ds1 [0, 1, 0, -17313, -832833] [2] 276480 \(\Gamma_0(N)\)-optimal
103488.hb4 103488ds2 [0, 1, 0, 14047, -3485889] [2] 552960  
103488.hb1 103488ds3 [0, 1, 0, -252513, 48568575] [2] 829440  
103488.hb2 103488ds4 [0, 1, 0, -127073, 96963327] [2] 1658880  

Rank

sage: E.rank()
 

The elliptic curves in class 103488ds have rank \(0\).

Modular form 103488.2.a.hb

sage: E.q_eigenform(10)
 
\( q + q^{3} + q^{9} + q^{11} - 4q^{13} + 6q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.